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Abstract. Many problems in computational science and
engineering are nonlinear and time-dependent. The so-
lutions to these problems may include spatially local-
ized features, such as boundary layers or sharp fronts,
that require very fine grids to resolve. In many cases,
it is impractical or prohibitively expensive to resolve
these features with a globally fine grid, especially in
three dimensions. Adaptive mesh refinement (AMR) is
a dynamic gridding approach that employs a fine grid
only where necessary to resolve such features. Numerous
AMR codes exist for solving hyperbolic problems with
explicit timestepping and some classes of linear elliptic
problems. Researchers have paid much less attention to
the development of AMR algorithms for the implicit so-
lution of systems of nonlinear equations.

Recent efforts encompassing a variety of applications
demonstrate that Newton-Krylov methods are effective
when combined with multigrid preconditioners. This sug-
gests that hierarchical methods, such as the Fast Adap-
tive Composite grid (FAC) method of McCormick and
Thomas, can provide effective preconditioning for prob-
lems discretized on locally refined grids. In this paper,
we address algorithm and implementation issues for the
use of Newton-Krylov-FAC methods on structured AMR
grids. In our software infrastructure, we combine non-
linear solvers from KINSOL and PETSc with the SAM-
RAI AMR library, and include capabilities for implicit
timestepping. We have obtained convergence rates in-
dependent of the number of grid refinement levels for
simple, nonlinear, Poisson-like problems. Additional ef-
forts to employ this infrastructure in new applications
are underway.

Key words Adaptive mesh refinement – Newton-Krylov
– Fast adaptive composite grid method

1 Introduction

Adaptive mesh refinement is a powerful technique for
increasing local spatial and temporal resolution in nu-

merical simulations of scientific and engineering prob-
lems. Structured adaptive mesh refinement (SAMR) al-
gorithms for increasing resolution in shock problems de-
scribed by hyperbolic systems of partial differential equa-
tions were pioneered in [7,8]. Subsequent developments
extended SAMR to other application areas, including in-
compressible flow [1,24,35]; flow in porous media [31];
solid mechanics [26,42]; magnetohydrodynamics [4,13,
23]; and laser-plasma interactions [17].

Systems of time-dependent partial differential equa-
tions are often solved using fully explicit or semi-implicit
algorithms based on operator-splitting and/or time lag-
ging. In these situations, it is typical that a linear ellip-
tic or parabolic equation must be solved at each time
integration step. Although the cost of solving these sub-
problems is not usually prohibitive, stability constraints
limit timestep size and overall accuracy can be com-
promised due to propagation of operator splitting er-
rors (see, for example, [32,38]). In contrast, fully implicit
approaches are free from splitting errors, and timesteps
are constrained solely by accuracy considerations. This
advantage is offset by the need to solve a large-scale
system of nonlinear equations during each integration
timestep. The computational efficiency of a numerical
method measures the number of numerical operations re-
quired to achieve a prescribed numerical accuracy. Thus,
the relative efficiency of fully implicit methods compared
to other approaches is determined by the trade-off be-
tween a reduction in the number of timesteps and the
larger cost of a single timestep. In the end, robust and
efficient methods for solving systems of nonlinear equa-
tions are needed for implicit approaches to be competi-
tive with other solution strategies.

Inexact Newton methods [10,15,18] are effective for
many scientific computing problems [33]. The efficiency
of an inexact Newton method is largely determined by
the solver used to approximate the solution of the system
of linear equations arising at each Newton iteration. An
important subclass of inexact Newton methods employs
Krylov subspace methods [22] to solve these linear equa-
tions. While a significant advantage of a Newton-Krylov
method is that it does not require explicit formation of
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a Jacobian matrix, the choice of a linear preconditioner
determines its efficiency. Multigrid methods are partic-
ularly effective preconditioners in the absence of local
mesh refinement [33]. Fortunately, multigrid techniques
can be extended to locally-refined grids found in SAMR
because of the hierarchical nature of those grids. In par-
ticular, Fast Adaptive Composite grid (FAC) methods
[36] have the potential to form the basis of hierarchical
preconditioners for a broad class of multiphysics prob-
lems.

In this paper, we discuss an algorithm and software
infrastructure that we have developed to explore the po-
tential of Newton-Krylov-FAC methods on SAMR grids.
It combines local mesh refinement capabilities with im-
plicit timestepping procedures and inexact Newton meth-
ods. It is built largely from existing software libraries.
The KINSOL [41] and PETSc [2,3] libraries provide in-
exact Newton methods. The SAMRAI library [30] pro-
vides parallel SAMR capabilities and software support
for the interaction between nonlinear solution methods,
preconditioners, and numerical discretizations for partial
differential equations.

We have addressed a number of important software
and algorithm interoperability issues in the construction
of interfaces to connect these pre-existing software li-
braries. The libraries work together efficiently and yet
they are sufficiently decoupled to allow parts of the so-
lution strategy to be replaced or customized to suit var-
ious application needs. A particularly important point
that we discuss is that each phase of the Newton-Krylov-
FAC solution process operates on data structures well-
suited to its needs with minimal data copying or trans-
formation. Although parallelism is not our focus here, we
note that the full parallel capabilities of SAMRAI [43] are
available to applications that employ this solver infras-
tructure. In the remainder of this paper, we focus our
discussion on details of algorithmic and software coordi-
nation.

We note that our approach to providing implicit solver
capabilities on locally refined grids is fundamentally dif-
ferent from that used in other AMR solver packages,
such as UG [6], ALBERT [40] or PLTMG [5]. While these
packages include sophisticated multilevel solvers (along
with extensive support for grid generation, discretiza-
tion, error estimation, and parallelism), the implementa-
tions are specific to the data structures employed in each
respective package, and cannot be used in other contexts.
In contrast, our approach leverages existing solver capa-
bilities to the greatest extent possible, and localizes the
use of grid-specific features to precisely those solver com-
ponents that require these features. Besides the benefit
of software reuse, this approach creates the possibility of
accessing other algorithmic capabilities (such as eigen-
solvers, sensitivity analysis, continuation methods, and
pde-constrained optimzation) that interoperate with the
solver components we employ.

Aspects of structured local mesh refinement and ca-
pabilities of SAMRAI are discussed in §2. Algorithmic
components are discussed in §3. This is followed by a de-
scription of the software infrastructure in §4. A demon-

stration calculation is presented in §5, and concluding
remarks are made in §6.

2 Structured local mesh refinement

This section describes structured local mesh refinement
and introduces notation that is used in subsequent sec-
tions. The notation is loosely based on that found in
[36]. Let hk = {h0, h1, . . . , hk}, k = 0, . . . , L− 1, denote
collections of mesh spacings, where hk denotes the mesh
spacing of level k and hk+1 ≤ hk. In particular, h0 is
the coarsest mesh spacing and hL−1 is the finest mesh
spacing. An SAMR grid ΩhL−1 may be represented as
a nested hierarchy of L grid levels Ωh0 ⊃ Ωh1 ⊃ · · · ⊃
ΩhL−1 , where the coarsest grid Ωh0 covers the entire
computational domain Ω. In what follows, we will some-
times drop the subscript L − 1 when referring to the
entire grid hierarchy Ωh ≡ ΩhL−1 , and use the nota-
tion Ωhk when referring to a subset of the grid hierar-
chy consisting of levels 0, . . . , k. Each level Ωhk consists
of a union of logically rectangular regions, or patches,
at the same mesh resolution hk. This hierarchical rep-
resentation facilitates implementation of operations on
the composite grid Ωh by decomposing them into oper-
ations on individual levels Ωhk , which in turn are further
decomposed into operations on individual patches. This
property enables reuse of existing software written for
regular grids, such as multigrid solvers and other numer-
ical routines. The use of rectangular regions also allows
the use of accurate discretization schemes; irregularities
in the discretization are localized to well-defined regions
where the resolution changes. Figure 2.1 shows an exam-
ple grid hierarchy with L = 3 and two patches on each
of the two finer levels. Note that refinement levels are
nested, but that patches at different levels need not be
nested.

Typically, we define the solution on the grid hierarchy
Ωh only at spatial locations that correspond to the finest
grid in the region. In particular, all of ΩhL−1 represents
part of the solution, as does the subregion of each level
Ωhk−1 that is not covered by Ωhk , for k = 1, . . . , L − 1.
Another way to say this is that the solution is defined
only in grid cells that have not been refined. Data in cells
that have been refined is used to construct the solution
in underlying finer cells. For instance, these cells can
be used to accelerate the convergence of iterative solu-
tion procedures in a manner similar in spirit to multigrid
methods. Usually the values in refined cells are defined
by appropriately averaging values on the next finer grid.

SAMRAI is an object-oriented C++ library that pro-
vides a flexible and robust toolbox of classes that sim-
plify the construction of algorithms and data manage-
ment in parallel SAMR applications. The library is orga-
nized into a collection of software packages each of which
contains classes with related functionality in SAMR grid
computations. A overview of SAMRAI software organiza-
tion and capabilities that facilitate application develop-
ment may be found in [30]. The parallel performance and
scaling properties of the adaptive capabilities of SAMRAI
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Fig. 2.1. Example SAMR hierarchy with three grid levels.
Each finer level has two patches whose boundaries are shown
with bold lines.

are discussed in [43]. Here, we briefly mention features
of some packages that are most germane to this paper.

The Hierarchy package provides abstract index space
and box calculus utilities on which most other operations
on a hierarchical SAMR grid depend. Structural classes
like Patch, PatchLevel, and PatchHierarchy, and base
classes for managing variables and data on the SAMR
grid hierarchy also reside here.

The Transfer package provides tools for interlevel
and intralevel data transfers. These include base classes
for operators that refine and coarsen data spatially, in-
terpolate data in time, and fill physical boundary con-
ditions. The package also contains communication algo-
rithms and data transaction schedules for moving data
associated with collections of variables among patches in
the grid hierarchy. Such operations include filling patch
data ghost cell values with data copied from neighboring
patches at the same level or interpolated from patches
at coarser levels. At physical domain boundaries, ghost
cells are set to values appropriate for the boundary con-
ditions and numerical methods being used.

The Mesh package provides capabilities for construct-
ing an SAMR grid hierarchy and dynamically reconfigur-
ing the hierarchy during a computation. This functional-
ity includes interfaces to user routines for selecting grid
cells for refinement. The library clusters these selected
cells into box regions and constructs each new patch
level, including load balancing based on either spatially-
uniform or nonuniform workload estimates, according to
user-supplied parameters [43]

Finally, the Solver package houses basic support for
linear and nonlinear solvers on SAMR grids. For exam-
ple, it provides interfaces to solver libraries, like PETSc
[2,3], and the KINSOL [41] and CVODE [29] solvers con-
tained in the SUNDIALS package [28]. Also, SAMRAI

provides vector classes that allow one to treat a col-
lection of variable quantities on a subset of grid lev-
els in an SAMR patch hierarchy as a single algebraic
vector. For instance, one can define the solution vec-
tor for a Newton-Krylov nonlinear solver to contain cell-
centered unknowns, node-centered unknowns, etc. Then,
these quantities can be processed as a single vector en-
tity in vector kernel operations, such as norms, inner
products, and other algebraic manipulations. The solver
library interfaces allow the chosen solver to manipulate
SAMRAI vector data directly during their algorithmic ex-
ecution. That is, the data is not copied from the SAMR
patch hierarchy representation, which facilitates stencil-
based computations, to a form on which the solver oper-
ates. The interfaces also resolve linkage issues between C
and C++ and simplify the implementation of user-defined
routines, such as residual computations and precondi-
tioner operations, by providing a straightforward C++ in-
heritance mechanism to supply function pointers to the
solver library. Much of the development of the SAMRAI
Solver package is the direct result of work described in
this paper. We will discuss these details further in §4.

3 Algorithms

A software infrastructure for solving nonlinear multi-
physics problems must provide robust and efficient solver
capabilities. Simultaneously, it must allow solution al-
gorithm components to be customized for specific ap-
plication needs. For treating time-dependent problems,
the software must manage the time-dependent data and
accommodate different time integration strategies. This
section provides an overview of the necessary algorithmic
ingredients.

3.1 Implicit methods for initial value problems

Many multiphysics problems can be expressed in the
form of a nonlinear initial value problem (IVP)

∂u

∂t
= f(u), u(0,x) = u0(x), x ∈ Ω ⊂ Rd (3.1)

together with boundary conditions specified on ∂Ω. Here,
f is a nonlinear function that involves spatial derivatives
of its argument, u0 is the initial condition, and d is the
spatial dimension of the problem. One way to solve (3.1)
is to use the method of lines, in which the derivatives
in f are replaced by suitable discretizations. This semi-
discrete approach transforms the IVP to a large-scale
system of ordinary differential equations, which may be
solved by a variety of methods. Solution methods are ei-
ther explicit, where advancing the solution in time uses
only past information, or implicit, where the advanced-
time solution is determined by solving a system of equa-
tions involving unknowns at the new solution time. The
method of lines leads to problems that are stiff so that
explicit time steps must be very small to maintain stabil-
ity. However, various implicit methods suitable for stiff
problems are known. In these methods, time steps are
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determined solely from considerations of accuracy, not
stability.

Perhaps the simplest and best known example of an
implicit method that also works for stiff problems is the
backward Euler (BE) method. BE replaces ut in the
semi-discrete equations by a backward difference in time,
and the solution at time tn+1 is found by solving

F (u) ≡ u− u(n) −∆tf(u) = 0 (3.2)

where u(n) is the solution at time tn and ∆t = tn+1− tn
is the timestep. In particular, F is nonlinear when f is
nonlinear. Many other methods suitable for stiff prob-
lems, such as schemes based on backward differentiation
formulas (BDF) and implicit Runge-Kutta methods [27],
lead to nonlinear problems that have a similar structure.

For stiff problems, the ability to use larger time steps
gives implicit methods an advantage over explicit meth-
ods only if the cost of solving systems of equations such
as (3.2) is not too large. This difficulty has traditionally
motivated researchers to pursue alternatives to fully im-
plicit methods, such as operator splitting and lineariza-
tion. These approaches are usually problem-specific, can
re-introduce stability-related restrictions on time steps,
and often reduce the order of accuracy of the time dis-
cretization method. In the context of local mesh refine-
ment, this risk is compounded by the danger of preclud-
ing any improvement in spatial accuracy resulting from
increased local mesh resolution. Although these issues
are still subjects of intensive efforts, recent algorithmic
research has shown that the cost of solving systems such
as (3.2) using inexact Newton methods can make fully
implicit methods competitive in both speed and accu-
racy [12,34,37].

3.2 Inexact Newton methods

Consider a system of nonlinear equations

F (u) = 0. (3.3)

A basic Newton method for solving (3.3) is given by

Algorithm 3.1. Newton’s Method

Choose an initial approximation u0

and a tolerance ε > 0.
Set k = 0.
Do {

Solve F ′(uk)sk = −F (uk).
uk+1 = uk + sk

k = k + 1
} (while ‖F (uk)‖ > ε)

At each iteration, the Newton step sk is the solu-
tion of a system of linear equations in which the coeffi-
cient matrix is the Jacobian F ′(uk) of the nonlinear sys-
tem evaluated at the current approximate solution uk.
Newton’s method in this form is impractical for large-
scale multiphysics problems for several reasons. Storage
requirements for the Jacobian F ′ may be high, and it

may be difficult even to compute F ′. Also, direct solu-
tion of the Newton equations may be too costly. Fortu-
nately, under mild assumptions [15], Newton’s method
will still converge when the Newton step satisfies the in-
exact Newton condition

‖F (uk) + F ′(uk)sk‖ ≤ η‖F (uk)‖, (3.4)

where the forcing term η satisfies η ∈ (0, 1) and may be
chosen either statically or dynamically; in particular, su-
perlinear or quadratic convergence can be recovered by
dynamically choosing η = ηk → 0 [19]. Consequently, sk

can be determined using an iterative method, which can
dramatically reduce the cost of solving the Newton equa-
tions for large-scale problems. This leads to the following
basic inexact Newton method :

Algorithm 3.2. Inexact Newton’s Method

Choose an initial approximation u0,
an initial forcing term η ∈ (0, 1),
and a tolerance ε > 0.

Set k = 0.
Do {

Find sk satisfying (3.4).
uk+1 = uk + sk

k = k + 1
(Optionally) choose a new η ∈ (0, 1).
} (while ‖F (uk)‖ > ε)

Remark 3.1. As with classical Newton’s method, inex-
act Newton methods are guaranteed to converge only if
the initial approximation is sufficiently close to the solu-
tion. However, globalization strategies that improve the
likelihood of convergence from initial approximations far
from a solution are readily incorporated into Algorithm
3.2 [18].

An important subclass of inexact Newton methods is
obtained when the Newton equations are approximately
solved with a Krylov subspace method [22]. These so-
called Newton-Krylov (NK) methods possess an impor-
tant property: since the Krylov subspace method only
requires Jacobian-vector products F ′(uk)v, the Jacobian
need never be formed nor stored. Instead, these products
can be approximated by finite differences

F ′(uk)v ≈ F (uk + εv)− F (uk)
ε

(3.5)

for a suitable choice of the differencing parameter ε.
Besides saving memory, this simplifies implementation,
particularly in the case where the nonlinear function F
arises from discretization of a nonlinear problem on a
locally refined grid. Jacobian-free Newton-Krylov meth-
ods result from the combination of using a Krylov sub-
space method to approximately solve the Newton equa-
tions with finite-difference approximations (3.5). We use
GMRES [39] because it is particularly effective when a
Jacobian-free approach is used.

The major cost of an inexact Newton method is the
determination of the inexact Newton step sk that satis-
fies (3.4). In particular, the efficiency of an NK method is
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determined by effective preconditioning. Preconditioners
that take advantage of the hierarchical nature of SAMR
grids have the potential to be particularly effective.

3.3 Hierarchical preconditioning

Considerable experience suggests that using multilevel
preconditioning strategies with Newton-Krylov methods
leads to robust, efficient, and scalable algorithms for a
wide variety of problems [33]. It is reasonable to expect
that this approach can be extended to SAMR grids, pro-
vided that we properly account for the nature of the lo-
cal refinement. The Fast Adaptive Composite grid (FAC)
method [36] can form the basis for extending these ideas
to SAMR grids. A basic description of FAC for solving
Lhuh = fh on Ω is given by

Algorithm 3.3. FAC Method

Initialize: rh = fh − Lhuh

For k = L− 1, . . . , 1 {
Set fhk = Ihk

hk
rhk .

Solve/smooth Lhkuhk = fhk .

Correct uhk = uhk + Ihk

hk
uhk .

Update rhk = fhk − Lhkuhk .
}
Solve Lh0uh0 = fh0 .
For k = 1, . . . , L− 1 {

Correct uhk = uhk + Ihk

hk−1
uhk−1 .

Set fhk = Ihk

hk
(fhk − Lhkuhk).

Solve/smooth Lhkuhk = fhk .

Correct uhk = uhk + Ihk

hk
uhk .

}

In Algorithm 3.3, grid functions uh , rh , and fh are
defined on the grid hierarchy Ωh , while uhk and fhk are
defined only on the level Ωhk . Lh refers to a linear op-
erator that has been discretized on Ωh , and Lhk refers
to a restriction of Lh to Ωhk . In particular, Lh accounts
for the change in resolution at the interfaces between
coarse and fine levels, and Lhk is equipped with suit-
able boundary conditions at the boundaries of Ωhk . The
operators Ihk

hk−1
: Ωhk−1 → Ωhk perform data transfers

and play a role similar to prolongation in multigrid, in-
terpolating data in Ωhk ∩Ωhk−1 (at hk−1 resolution) to
Ωhk . Additional transfer operators Ihk

hk
: Ωhk → Ωhk

and Ihk

hk
: Ωhk → Ωhk serve to extract a level from Ωhk

and insert a level into Ωhk , respectively. These opera-
tions are primarily copy operations, with the exception
that in an implementation Ihk

hk
often includes additional

operations on ∂Ωhk to fill ghost cells. See [36] for full
details.

FAC shares many elements in common with multi-
grid methods. Consider the V-cycle specified in Algo-
rithm 3.3. An exact solve, which could be provided by
a multigrid solver, is used on Ωh0 . On Ωhk , a correc-
tion is constructed on each finer level Ωhk , k > 0, by

first computing the residual on Ωhk and mapping it to
Ωhk . A single level correction is then calculated on Ωhk

by solving (or smoothing) a residual equation on Ωhk .
The solution is corrected on Ωhk and the residual is up-
dated on Ωhk . The residual is then restricted to Ωhk−1 .
The procedure then recurses through coarser levels on
the SAMR grid. Upon return from the recursion, the so-
lution is corrected on Ωhk , followed by an update of the
residual on Ωhk . A post-smoothing sweep on Ωhk and a
second correction on Ωhk completes the cycle. Other cy-
cling strategies, such as a coarse-to-fine slash cycle (suit-
able for problems where a good initial approximation is
not known) or F-cycles (suitable for robustness when the
coarsest grid is not solved exactly) are also possible.

We emphasize that FAC is driven by residuals that
are calculated on Ωhk and accounts for changes in reso-
lution at coarse-fine interfaces via the operators Lhk ob-
tained through some discretization on Ωhk . The details
of the discretization depends on the underlying uniform
grid discretization and the specific problem being solved.

4 Software infrastructure

The SAMRAI AMR library provides parallel data man-
agement and supports the interaction of the various al-
gorithmic pieces in our implicit-timestepping, Newton-
Krylov-FAC solution strategy. In this section, we de-
scribe the essential design features of implicit timestep-
ping and interfaces to solution methods for systems of
nonlinear equations on an SAMR grid hierarchy. Nonlin-
ear solver capabilities, such as inexact Newton methods,
are provided through interfaces to the solver libraries
KINSOL and PETSc. We are primarily concerned with
software design that promotes algorithmic flexibility and
efficient implementation of different numerical aspects
associated with solving nonlinear problems. Discussion
of parallel scaling of data communication and adaptive
meshing operations in SAMRAI may be found in [43].

Our approach solves key problems associated with
compartmentalizing algorithmic control and treating non-
uniform data structures across software libraries. The
main difficulties result from choices made by solver li-
brary developers who wish to provide specific algorith-
mic content in a general manner for use in a broad range
of applications. Typically, the data structures in these
libraries, such as vectors and matrices, are designed for
high performance of the target algorithms. This approach
is very useful and flexible from a solver perspective. How-
ever, application developers who use the libraries may
need to provide data for their problem in a form suited
to the solvers but less-suited for their numerical meth-
ods. The result can be a monolithic application code im-
plementation requiring data copies between the solvers
and the application. Also, it may be difficult for appli-
cation developers to modify or employ different aspects
of solver libraries.

For example, hypre [21] provides powerful multigrid
algorithms, but requires problem data to be transformed
into matrix and vector representations that are highly
tuned to linear algebra needs and that do not provide
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capabilities for locally-refined grids. Multilevel precon-
ditioners, such as FAC, can be expressed abstractly in
terms of operations on levels in a locally-refined grid hi-
erarchy. It is straightforward to use hypre operations,
such as solving on a level, but other finer-grained capa-
bilities, such as smoothing on a level, are not accessible.
Also, customized operations, such as specialized prolon-
gation and restriction, are best performed using abstrac-
tions that naturally expresses the necessary operations.

Nonlinear solver engines are typically layered atop
linear solver libraries and likewise do not provide the
means to manage the data complexity associated with
locally-refined grids. Although KINSOL and PETSc pro-
vide their own vector types, they fortunately allow these
vectors to be replaced with other suitable data struc-
tures. This is extremely valuable, since evaluation of
nonlinear residuals and Jacobian-vector products on an
SAMR grid hierarchy is facilitated by exploiting the mul-
tilevel representation.

In the following sections, we explore these issues fur-
ther and discuss how our software approach accommo-
dates a broad range of algorithmic generality and flexi-
bility.

4.1 Implicit time discretization

Any practical implementation of an implicit time inte-
gration method should include several features besides
setting up and solving a method-specific system of equa-
tions such as (3.2). If variable timestepping is used, some
means for selecting the next timestep must be provided.
In addition, solution of the implicit equations can be
aided by providing an improved initial approximation to
the time-advanced solution; for example, one may ex-
trapolate in time from earlier solution values. Accept-
ability of the time-advanced solution delivered by the
nonlinear solver must be determined also. If it is un-
acceptable, some action must be taken to recompute
the solution, perhaps with a smaller timestep. In gen-
eral, this requires problem-specific evaluation of the in-
tegrated solution. Additionally, failure of the nonlinear
solver to converge to specified accuracy should be han-
dled gracefully when possible. Finally, data structures
that manage the time-dependent solution process must
be updated. Following is an outline for the backward
Euler method that incorporates these features.

Algorithm 4.1. Backward Euler Method

Set t = t0, n = 0, u(0) = u0.
Choose an initial time increment ∆t.
t = t + ∆t.
Do {

Do {
Choose initial approximation for u(n+1).
Solve (3.2) to obtain u(n+1).
} (until u(n+1) is satisfactory)

Update solution.
Choose a new ∆t.
t = t + ∆t, n = n + 1.
} (while t ≤ tfinal)

Backward Euler implicit time discretization serves as
a useful archetype for exploring the issues in more so-
phisticated and accurate integration methods. Currently,
we provide an implementation of this method. Higher-
order schemes, such as Crank-Nicolson, BDF and im-
plicit Runge-Kutta methods, can readily be accommo-
dated within the same framework.

Figure 4.1 depicts the organization and relationships
among the solution components in our design. The fig-
ure shows the abstract interface classes and concrete im-
plementations obeying those interfaces as well as most
of the important member functions of each class. The
ImplicitIntegrator object is the main driver for the
integration process. It coordinates routines that imple-
ment the spatial and temporal aspects of the numerical
approximation via the NonlinearSolverStrategy and
ImplicitIntegratorStrategy interfaces, respectively.

The ImplicitIntegratorStrategy class defines the
interface for methods that treat the temporal discretiza-
tion. Each ”strategy” class in our design follows the
Strategy object-oriented design pattern [25]. In partic-
ular, a strategy is an abstract base class that defines the
interface for a concrete implementation that is provided
by a derived subclass. For example, the application code
must define the variables comprising the solution vector,
compute an initial guess for the next time integration
step, select the timestep ∆t, determine whether a solu-
tion is acceptable, and manage storage for the solution
and other problem-dependent quantities when an accept-
able solution is found. These operations are declared in
the ImplicitIntegratorStrategy interface.

4.2 Interfaces to nonlinear solvers

A simple interface for solving a system of nonlinear equa-
tions is defined by the NonlinearSolverStrategy class.
Any nonlinear solver that implements this interface can
be used. Currently, we provide two concrete nonlinear
solvers by using the suites of inexact Newton methods
found in the KINSOL and PETSc libraries.

The SNES SAMRAIContext class exposes PETSc func-
tionality and the KINSOL SAMRAIContext class does the
same for KINSOL. These two classes are wrappers that
follow the Adapter object-oriented design pattern [25].
User code may either call solver library routines directly
or access the solvers through these wrapper classes. How-
ever, the wrappers expose the necessary functionality of
their corresponding solver libraries in a uniform fashion
that makes use of either solver library in an application
simple and straightforward. The wrappers also perform
useful functions in our design beyond implementing the
NonlinearSolverStrategy interface. They provide ad-
ditional capabilities, such as input and restart file pro-
cessing, provided by SAMRAI so that these things can be
done uniformly by the application and solvers. Finally,
the wrappers eliminate complexity for users by handling
the details of linking C and C++ code, especially when the
C code calls C++ class methods. Solver-specific interfaces
to user code are defined in the SNESAbstractFunctions
and KINSOLAbstractFunctions abstract base classes.
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setJacobian

solve
initialize

NonlinearSolverStrategy

initialize

updateSolution

getNextDt
checkSolution

advanceSolution

checkSolution
updateSolution

User−Supplied Routines

ImplicitIntegrator

setInitialGuess

jacobianTimesVector
precondSolve
precondSetup

setupSolutionVector

getNextDt

ImplicitIntegratorStrategy

evaluateNonlinearFunction
PETSc

KINSOL

getFromRestart
getFromInputinitialize

solve

SNES−SAMRAIContext

solve getFromRestart
getFromInputinitialize

KINSOL−SAMRAIContext

applyPreconditioner
setupPreconditioner
evaluateNonlinearFunction

jacobianTimesVector

KINSOLAbstractFunctionsSNESAbstractFunctions

Fig. 4.1. Organizational structure of implicit timestepping and nonlinear solver classes and interfaces. Abstract interfaces are
specified with italicized type, while concrete classes are denoted with standard type. Inheritance is indicated with an open
triangle pointing toward the base class, and a solid arrow indicates when an object maintains a reference (e.g., a pointer) to
another object. Most of the more important member functions for each class are also indicated. Note that the solver libraries,
KINSOL or PETSc, interact directly with the ”wrapper” classes, either KINSOL-SAMRAIContext and SNES-SAMRAIContext, only.

These classes provide an inheritance-based, object-oriented
mechanism for providing user routines to the solvers.

The ability to leverage the KINSOL and PETSc li-
braries is possible since each of their inexact Newton
method implementations is written in terms of opera-
tions on vectors, as described in §3.2, and these vectors
can be replaced. We replace the vectors from these li-
braries with SAMRAI vectors, which provide vector data
management and operations for an SAMR grid hierar-
chy managed by SAMRAI. This situation is described in
more detail below.

4.3 Sharing solution vectors among software
components

Typically, application codes use vectors as containers for
any number of variables that possibly have different grid
centerings, such as cell-centered and node-centered quan-
tities. In the simplest usage, a single variable defined on
a single global grid is mapped to a single-indexed vector
using some ordering scheme; for a structured grid, lexi-
cographical ordering is the usual choice. When multiple
variables are present in a simulation, a variety of map-
pings are possible. For example, storage can be mapped
to single-index vector locations one variable at a time,
or one grid cell at a time (sometimes referred to as block
mapping). When mixed centerings are used, as happens,
for example, in a staggered grid discretization for flu-
ids in which the velocity field is face-centered and the

pressure is cell-centered, more care is needed due to the
different number of grid locations for each type of grid
centering. Usually, the mapping of unknowns represented
by multiple variable grid quantities to a vector that can
be processed by a solver library is the responsibility of
application code developer employing the solver. SAM-
RAI vectors provide a natural way to employ solvers to
solve problems that involve more than one variable quan-
tity on the SAMR grid hierarchy as we describe below.

The concept of a vector readily extends to distributed
memory environments by including additional bookkeep-
ing for mapping portions of vectors onto different pro-
cessors. Often both global indices and local indices are
employed. Operations can readily be defined on such dis-
tributed vectors without difficulty; in fact this can be
done in a way that makes the location of data completely
transparent to an application code.

Many applications maintain a dual description of their
data, if only implicitly. In one description, data resides in
contiguous single-indexed locations. In another, the grid-
based nature of the data is used through references to
nearest neighbors using offsets into other single-indexed
locations. In fully unstructured calculations, this idea is
generalized by supplementing the vector representation
with neighbor lists associated with each vector index.

A SAMR grid hierarchy introduces new complica-
tions. For example, all data values at all grid locations
on all grid levels are not typically considered to be part
of the numerical solution. Although data may be allo-
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pressure weights
velocity weights

Weights

velocity
pressure

CellDataOps

FaceDataOps

SAMRAIVector

Pointer to Grid Hierarchy

Operations Components

Fig. 4.2. Layout of a SAMRAIVector object. Each vector holds
information for manipulating data associated with the vari-
ables registered with the vector, such as applying vector ker-
nel operations for the appropriate data centering, and weights
for treating multi-resolution data.

cated on all levels in a particular region of the domain,
the finest grid in a region usually contains the desired
solution values. Moreover, the grid can change dynami-
cally during the course of an adaptive calculation. This
will change the dimension of the vector space for the
problem as well as which grid points on each level hold
valid solution values.

A SAMRAIVector object handles these complexities
transparently for the user and the solver by translat-
ing vector routines into operations for data stored on a
SAMR grid hierarchy. Each SAMRAIVector simply main-
tains a pointer to the SAMR grid on which the variables
are defined and holds information for accessing the vari-
able data on patches in the grid hierarchy, such as an
integer index for the location of the data in an array of
patch data objects. Vector operations suitable for dif-
ferent grid centerings are also provided and shared by
all vector objects. Thus, a SAMRAIVector has negligible
storage overhead and derives all of its functionality from
SAMRAI grid and data management capabilities. In ad-
dition, a SAMRAIVector object never changes to accomo-
date changes in the algebraic structure of the vector due
to regridding operations. Grid changes affect the patch
configuration of the SAMR hierarchy only. Such flexi-
bility is not generally found in solver libraries. In fact,
changing a vector supplied by a solver library usually re-
quires one to change the solver as well by reinitializing its
state. Figure 4.2 depicts the structure of a SAMRAIVector
object.

It is also possible to register a weight quantity that
applies to one or more variable components registered
with a SAMRAIVector. This weight can serve several pur-
poses. For one, it can be used to mask data on coarse grid
cells that are covered by finer cells. It can also be used
to store quadrature information that reflects the manner
in which the discretization is derived. For example, it is
natural to define a norm by summing over the levels in
the hierarchy, patches P in each level, and indexes in
each patch:

‖f‖2 =
1
V

L−1∑
k=0

∑
P∈Ωhk

∑
(i,j)∈P

|fi,j |2Vi,j

KINSOL N_Vector operations

kins_AbstractVector

KINSOL_SAMRAIVector

KINSOL N_Vector operations

static getSAMRAIVector

static createKINSOLVector
static destroyKINSOLVector static destroyPETScVector

static getSAMRAIVector

static createPETScVector

PETSc_SAMRAIVector

PETSc Vec operations

petc_AbstractVector

PETSc Vec operations

SAMRAIVector

Fig. 4.3. A SAMRAIVector object is wrapped to provide op-
erations specific to the KINSOL and PETSc solver libraries.

where V is the volume of the domain Ω and

Vi,j =
{

vol(Ωi,j) if cell (i, j) ∈ Ωhk −Ωhk+1

0 otherwise .

This definition of a norm is the natural discrete analog
of the continuous L2 norm and has the property that
‖1‖ = 1, independent of the number of levels and grid
cells in the SAMR grid configuration. This is accom-
plished by a suitable initialization of each weight quan-
tity and is fairly straightforward to maintain as the grid
configuration changes during dynamic regridding using
SAMRAI utilities.

As noted earlier, KINSOL and PETSc provide their
own vectors, called N vectors and Vecs, respectively.
These structures have distinct storage schemes and op-
erations specific to the implementation of their respec-
tive solver engines. SAMRAI exploits the fact that these
solver libraries allow their vector structures to be re-
placed by supplying classes that wrap SAMRAIVector
objects as solver-specific vectors. This is illustrated in
Figure 4.3.

The SAMRAI library provides abstract base classes
kins AbstractVector and petc AbstractVector to fa-
cilitate the use of C++ vector objects in the solver li-
braries, which are written in C. These interfaces are de-
signed to be independent of SAMRAI; their primary role
is to simplify linking C and C++ code. Each subclass
KINSOL SAMRAIVector and PETSc SAMRAIVector wraps
a SAMRAIVector for use by the corresponding solver li-
brary. Each wrapper translates calls to vector kernel op-
erations made within the solver to routines supplied by
the SAMRAIVector class. Typical usage of one of these
wrapper classes involves first creating a SAMRAIVector
object, then ”wrapping” it via a static creation method
which also creates a vector object recognized by either
KINSOL or PETSc. The static methods facilitate creation
and destruction of vectors and wrappers in application
code as well from within solver library code. There is
negligible storage and performance overhead associated
with this decoupling, and software maintenance is sim-
plified as each of the libraries changes independently.

One additional point related to vector storage over-
head is worth noting. While ghost cells are needed for
most solution variables when they are used in stencil-
based operations, linear algebraic operations in solver
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libraries do not require them. KINSOL and PETSc both
create internal workspace by cloning vectors provided
by the application. Including ghost cells in these cloned
vectors could lead to a potentially unacceptable storage
overhead when there is a large number of small patches in
a large three-dimensional problem, or when the dimen-
sion of the Krylov subspace is large. Also, embedding
ghost cells in a vector reduces the efficiency of vector
operations by requiring non-unit strides between vector
elements separated by ghost cells.

In our approach, the solution vector defined for the
solver typically defined to have patch data components
without ghost cells. Since the solution vector is passed
to the solver during initialization, all internal state vec-
tors cloned from that reference vector will also have data
with no ghost cell storage. Then, it is the responsibility
of each application code routine to supplement incoming
vector data with ghost cell storage and set data in the
ghost regions when necessary. Also, before control is re-
turned to the nonlinear solver, changes to vector values
(excluding ghost data) must be passed back to the proper
vector storage used by the solver through local (i.e., on
processor) copies. With minor variations, this approach
is rather standard for applications developed for dis-
tributed memory high-performance computing systems.
Also, upon reflection, it should be apparent that placing
these data management responsibilities on user routines
is desirable for multiphysics problems involving compli-
cated boundary conditions and sophisticated composite
grid numerical discretizations. The SAMRAI Transfer
package provides powerful capabilities to manage these
issues in a general application code.

4.4 Preconditioning

The implicit timestepping classes and interfaces to the
nonlinear solver libraries are designed to be general and
flexible. In particular, the interfaces to the nonlinear
solvers provide the full capabilities of the underlying
software. However, it is much more difficult to deliver
the same degree of generality and flexibility for precon-
ditioning due to the variety of application requirements
and possible algorithmic strategies. Since preconditioner
performance is key to overall algorithm performance, it
is important to adopt an approach that sufficiently de-
couples the preconditioner from the rest of the solution
strategy so that the exploration of various preconditioner
techniques is not precluded.

Problem-specific aspects of FAC can be found by
examining Algorithm 3.3. In particular, it is apparent
that a generic implementation must allow an applica-
tion to fully specify the discrete operator Lh , includ-
ing physical boundary conditions and discretization at
changes in grid resolution. Further, multigrid experience
demonstrates that defining the interlevel transfer oper-
ator Ihk

hk−1
in terms of the grid geometry alone often

leads to difficulties for certain problems, such as those
involving diffusion operators with discontinuous coeffi-
cients. Such difficulties can often be alleviated by us-
ing operator-dependent interlevel transfers, which often

form the basis of ”black-box” multigrid packages [16,14].
While geometry-based interlevel transfers can use capa-
bilities that are already built into SAMRAI, operator-
dependent interlevel transfers, which are defined in terms
of the particular equations being solved, are outside the
scope of the framework.

We implement an FAC preconditioner in two separate
components. The first supplies the basic FAC scheduling
algorithm for visiting levels of Ωh and is independent
of the problem being solved. The second is a problem-
specific component in which application developers de-
fine the problem and implement interlevel transfer oper-
ations via inheritance from an interface that follows the
strategy design pattern. At this stage of development,
the capabilities are sufficiently flexible to treat diffusion
operators with discontinuous coefficients as well as prob-
lems having multiple variables per gridpoint. However,
we consider our implementation rudimentary and will
present more details in future work.

The benefits of such an approach are becoming ap-
parent in an ongoing effort that uses this solver infras-
tructure to extend the methods of [12] to locally refined
grids. In this work, multilevel solves for a Poisson prob-
lem, a convection-diffusion problem, and a convection-
diffusion problem involving a tensor-valued diffusion co-
efficient are needed to implement the preconditioner. The
above strategy allows us to coordinate these parts of the
overall solution approach by forcing us to implement only
the operator-specific aspects of each solver, re-using the
component that implements the FAC scheduling algo-
rithm.

5 Example calculations

We demonstrate the capabilities of the software and al-
gorithmic components described on an unsteady version
of the Bratu problem:

∂u

∂t
= ∆u + λeu + f, t ≥ 0, (x, y) ∈ Ω ≡ [0, 1]2 (5.1)

with initial and boundary conditions

u(x, y, 0) = 0 (x, y) ∈ Ω

u(x, y, t) = 0 t > 0, (x, y) ∈ ∂Ω

where the source term f is determined by specifying the
exact solution

u(x, y) = tx(1− x)y(1− y)e−
(x− 1

2 )2+(y− 1
2 )2

σ2 .

The parameter σ provides a mechanism to adjust the
size of the solution feature requiring enhanced resolution.
Both the number of refinement levels and the size of the
base grid are varied. Static refinement regions are defined
simply as

Ωk =
[
2k − 1
2k+1

,
2k + 1
2k+1

]2

, k = 0, 1, 2, . . .

with Ω0 = Ω.
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The concrete FAC solver used in this example uses
red-black Gauß-Seidel smoothing on the finer levels. In-
terlevel transfers use bilinear interpolation for both re-
striction and prolongation. The coarsest level is solved
to a prescribed tolerance of 10−4 using the PFMG solver
from hypre [21].

Except for cells adjacent to changes in resolution, the
problem can be discretized using the usual finite volume
approach. Near coarse/fine interfaces, this must be mod-
ified in two ways. First, for cells on the coarse side of
the coarse/fine interface, the coarse cell flux at the face
shared by two fine cells must be set to the sum of the two
fine cell fluxes. Second, the computation of the fine cell
fluxes must account for the change in resolution as well
as the fact that cell-centered data at different resolution
is not properly aligned. The fine fluxes are computed us-
ing a simple difference of coarse and fine data together
with a tangential correction that is computed on the fine
side of the interface [20].

The solution is advanced to a final time of tfinal = 1.
Results for σ = 0.01 and timestep ∆t = 0.125 appear in
Figure 5.1. The base grid with h = 1/16 and no refine-
ment fails to resolve the solution feature; three further
local refinements are needed before adequate resolution
is obtained. In this case the finest grid has a mesh size
of h = 1/128 and achieves slightly better accuracy than
is obtained with this global mesh size using 98% fewer
gridpoints. For a given number of refinement levels, using
a finer base mesh yields roughly second-order improve-
ments in accuracy; for a given base mesh, adding re-
finement levels yields slightly less than second-order im-
provements in accuracy. Further, for each base grid size,
the number of linear iterations per timestep is nearly
independent of the number of refinement levels.

6 Conclusions

We have discussed algorithm needs for solving large-scale
nonlinear problems on locally refined grids, and have
described a software infrastructure that supports these
needs with a significant degree of flexibility to explore al-
gorithmic choices. Two particularly important contribu-
tions have been described. First, effective software reuse
has been achieved and nontrivial software interoperabil-
ity hurdles have been resolved. Newton-Krylov nonlin-
ear solver implementations in the PETSc and KINSOL li-
braries are expressed in terms of high-level operations on
vectors. Interoperability between the solver libraries and
SAMRAI is accomplished by redefining these operations
so that the solvers can operate directly on SAMR grid hi-
erarchy data. Furthermore, in the operations provided by
the solvers, data is managed by SAMRAI, and, other than
user-defined operations, no data copies need to be made.
This sort of data structure decoupling also allows hierar-
chical preconditioning strategies using SAMR grid oper-
ations provided by SAMRAI to be easily coordinated with
the nonlinear solver libraries. Note that this contrasts
with the approach taken in [11], where the preferred
strategy was to copy data between the solver package and

the grid package. Second, algorithmic flexibility and ro-
bustness was achieved. Time integration strategies, non-
linear solver implementations, and preconditioner algo-
rithms are decomposed and sufficiently separated from
problem-specific concerns so that algorithmic variations
may be explored fairly easily for a given problem. Also,
we demonstrated convergence rates independent of the
number of mesh refinement levels for a simple nonlinear
heat equation. While this is a minimum requirement that
must be met before extending these strategies to more
realistic problems, current work is showing that the ap-
proach and tools described in this paper are applicable
to more complex problems.
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